
DOCUMENT RESUME

ED 428 697 IR 019 358

AUTHOR Marzo-Lazaro, J. L.; Verdu-Carbo, T.; Fabregat-Gesa, R.
TITLE User Identification and Tracking in an Educational Web

Environment.
PUB DATE 1998-06-00
NOTE 7p.; In: ED-MEDIA/ED-TELECOM 98 World Conference on

Educational Multimedia and Hypermedia & World Conference on
Educational Telecommunications. Proceedings (10th, Freiburg,
Germany, June 20-25, 1998); see IR 019 307. For related
paper, see IR 019 357.

PUB TYPE Reports Descriptive (141) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Computer Interfaces; Computer Security; Computer Software

Development; *Computer System Design; *Computer Uses in
Education; Courseware; Database Management Systems;
Educational Technology; Foreign Countries; Gateway Systems;
Higher Education; Hypermedia; Navigation (Information
Systems); *World Wide Web

IDENTIFIERS *Client Server Computing Systems; Computer Users; HTML;
Spain

ABSTRACT
This paper describes a solution to the user identification

and tracking problem within an educational World Wide Web environment. The
paper begins with an overview of the Teaching Support System project at the
University of Girona (Spain); the main objective of the project is to create
an integrated set of tools for teachers to use to create and publish dynamic
and interactive teaching materials that make use of the new possibilities
offered by information technologies and the Internet. Functionalities of the
Unit Navigation Module (UNM) of this platform that require user tracking and
identification are summarized, and previous possible solutions are described.
The adopted solution is then presented; the solution uses a Common Gateway
Interface (CGI) compliant program running on the Custom Server (CS) machine
that processes HTML pages before they are sent to the local (client) machine
and inserts user identification within hypertext links. The CS also provides
user identification and validation, HTML document customization, database
maintenance, translation of database information into reports, control of
private working documents, asynchronous and synchronous communications, and
other similar capabilities. Three tables present standard log file contents,
custom log file contents, and session tracking information. Two figures
illustrate standard HTTP architecture and the proposed architecture. Contains
17 references. (DLS)

**
Reproductions supplied by EDRS are the best that can be made

from the original document.
**

User Identification And Tracking In An Educational Web Environment'
"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

G.H. Marks

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

3 This document has been reproduced as
received from the person or organization
originating it.

3 Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

Do

J.L. Marzo-Lázaro*, T. Verdit-Carbe, R. Fabregat-Gesa*.
* Institut d'Informatica i Aplicacions. Universitat de Girona.

Avda. Lluis Santab5 s/n (17071) Girona (Spain).
Tel.: +34 72 418484 and +34 72 418475. Fax +34 72 418399.

E-mail {marzo,toni,ramon}@eia.udg.es

Abstract : Open Distance Learning is an emerging paradigm where students, teachers, and
equipment may be at different geographic locations. The WWW provides an excellent platform for
publishing and disseminating a wide variety of curriculum materials. To evaluate the impact of
these materials on the teaching and learning process, user identification and tracking is needed.
Current HTML clients and HTTP servers are limited in these aspects. In this paper, a solution is
described based on an educational web environment. This proposal uses a server program, called
Custom Server, that processes HTML pages before they are sent to the client and inserts user
identification within hypertext links.

The Custom server takes also the following responsibilities : user identification and validation,
HTML-document customisation, database maintenance, translation of database information into
reports, control of private working documents, asynchronous and synchronous communications, and
other similar capabilities.

1. Introduction

The World Wide Web [1] (WWW or simply "web") is an Internet service that provides an excellent platform for
publishing and disseminating a wide variety of curriculum materials. The web is an effective tool for education
because of its capacity of presenting multimedia information . Also, the interactive nature of this medium can enhance
the teaching and learning process. It can be used as a means to understand complex systems and ideas. It is also a
fantastic tool for a constructive approach of this process, in which the educator and the learner are active agents in
their respective progress.

Internet communications services such as electronic mail (e-mail), news, Internet Relay Chat (IRC) [2] or
videoconferencing tools, facilitate the communication and make the collaboration between students and teachers
possible. Individual students can communicate with their teachers and peers without the constraints of having to meet
at specific places and times. Students can work on learning materials at own pace and discuss when they have
questions, thus sharing experiences with others. They can learn individually but not alone; they can be physically
separated but study together through computer networks.

To effectively make use of these materials and evaluate their impact on the teaching and learning processes, user
identification and tracking capabilities are needed. Every user must be perfectly identified, and every step he makes
must be stored into a database. This database must include for each user which documents have been retrieved, how
many times, how much time has been spent within, which have not been visited yet, the responses to proposed tests or
exercises, etc. Based on this information the system must generate reports to provide a feedback, to both teachers and
students. This information will no doubt help to improve the teaching-learning process.

As we will see further on, current standard Hypertext Transfer Protocol (HTTP) clients [3] (browsers [4]) and servers
[5] and HyperText Markup Language (HTML) [6] are limited in user identification and tracking capabilities . The aim of
this paper is to provide a possible solution to the user tracking and identification problem within an educational web
environment. The presented solution uses a Common Gateway Interface (CGI) [7] program that processes HTML
pages before they are actually sent to the client. The CGI program encodes user identification within hypertext links,
enabling the server to identify users from modified links passed back from the client. In this way, it provides tracking
across a series of HTTP requests while it offers a way to overcome the stateless nature of HTTP sessions without
changing the underlying nature of the protocol.

2. The Teaching Support System Project. Objectives

An interdisciplinary group, at the University of Girona, has started the Teaching Support System project [8] and
[9]. The main objective of this project is to create an integrated set of tools where teachers can create and publish new
dynamic and interactive teaching materials that make good use of all the new possibilities offered by the information
technologies and the Internet. The tools are also used by the students to access these materials in a decentralised way

This work has been partially supported by the University of Girona §=pdD97-I97 and Spanish Government CICYT : TEL97-1054-0O3-03

UST COPY

from anywhere on the Internet, and at the same time by the teachers to keep track of students use. It also improves the
communication between students and teachers.

Several objectives of the teaching support system project can be identified. A major goal is to allow teachers to
create dynamic and interactive multimedia teaching materials (from now on, "units"), using the new standard
information presentation techniques (HTML, Java [10], javascript [11], complemented with Common Gateway
Interface programs (CGIs), Server Side Includes (SSI) [12], etc.). The tools are designed to be used by teachers with
any level of computing knowledge.

Teachers, students and authorised persons access to the available resources in a decentralised way, speaking both
in terms of space and time, and with the benefits of the hypertext concept. The information is structured in a non-
linear basis, and therefore each student is capable to access it according to its own learning patterns, needs and
initiative. The communication and collaboration between students and teachers is enhanced. The Internet gives us
several services that facilitate this communication. The platform must make full use of communications in an
integrated way with the materials.

However, this project does not intend to substitute the traditional teaching in classroom, but to complement it. In
order to achieve these objectives, our approach has two different main modules. One of them is used by the teachers to
make the units, and the other one makes it possible for the students (and other people) to use these units. We call them
Units Creation Module (UCM) and Units Navigation Module (UNM) respectively.

The main function of the UCM is the creation of the didactic units by the teachers. But it is important to highlight
that we are not only speaking of computer science teachers but all teachers. So the UCM must be easy to use, and it
must not require any programming skills nor a lot of new tools to learn. To achieve this last goal, the UCM can make
use of materials created using most common standard programs, like word processors, graphics packages, etc.
Importing them into predefined templates, the UCM generates the units ready to publish. A complete set of templates
is provided to adapt to many types of needs.

The implementation of the UCM module is postponed to a second phase of the project, although some parts are
already being developed. In the first phase, we design and implement a first version of the UNM module, and we
mainly use already existing standard tools (under a set of basic guidelines) to make the first test units to evaluate and
fine tune the UNM. After the UNM is evaluated and validated, the final design and implementation will be made.
Then, the UCM module will be designed and implemented.

3. The user tracking and identification problem

The UNM module is the tool used to access the units created using the UCM module. But many of the UCM
functionalities require a perfect identification of every single person accessing the system, and must be able to
completely track each action this person is performance. For instance, the UNM needs to perfectly know who is
accessing which document at any moment, or the answer he gives to any exercise. It would also be interesting to keep
some kind of "state" about the user's navigation through the materials, for instance, to enable users to start any new
session where they left their previous session. Some of those UNM functionalities that require user tracking and
identification are:

Personal Working Space. By clicking a single button, users have access to a personal document with editing
capabilities. The objective is to give to the users the "piece of paper and pencil" they certainly need to take notes
according as they study the unit. The editor can be either a local one or a Java applet downloaded from the server. In
the first case, users are responsible for their documents (name, location, saving it, etc.), while in the second one, the
document resides on the server machine, and thus, is automatically loaded and saved when starting or exiting the
working space tool.

The Navigation Tree. This tool shows the complete structure of a unit (all their pages, and how are they linked). It
makes it possible to "fast jump" to any page of the unit by clicking on the tree. Moreover, this tree informs the user
about which pages he has already visited (and how many times, how much time he has spent there, etc.). The
Navigation Tree is a useful feature that helps to solve the main hypertext inconvenient: hyperlinked documents are not
lineal and therefore it is very easy to "get lost", or forget to visit a whole set of pages only because some link has not
been followed.

Complementary Activities, Tests and Exercises. The units can contain complementary activities proposed by the
teacher : multiple choice exercises, concept associations, etc. are classical examples. The student gets automatic
feedback, being able to immediately know if the answers he gives are correct or not. These activities are created using
the UCM, and consist of a set of predefined activities.

Reports. At any moment users can get reports about how the unit is being used. Teachers can ask for a set of
reports about the student activity. For instance, teachers will be able to know all the information about any student
activity. Also, students can get reports about their own progress. A complete set of activity reports is available.

3

All these functions, and obviously asynchronous-synchronous communications, have to be implemented with users
identification. But current HTTP protocol is very limited with respect to this topic. Therefore, some of the features
needed for the UNM are difficult (or impossible), when standard browsers and servers are used. It can be said that the
HTTP is an stateless protocol, that is, every request to the server is treated independently, thus a request has no
information of previous related requests. In particular, two consecutive accesses made by some students are not related
at all from the server point of view. Moreover, a web browser user does not need to identify itself in order to navigate
the web, since an HTTP request carries no information about the user, so the server cannot track users.

Therefore, to add identification and tracking capabilities to the basic HTTP client-server scheme is necessary to
make all the above functions possible. Moreover, a major design objective is the UNM portability; that is server and
platform are independent, and accessible by standard web browsers. We considered some previous possible solutions
which are briefly described in the following:

Using the standard log files generated by the server. When a user selects an HTML page link, the browser requests
some contents from the HTTP server, (see Figure 1). The server gets and sends the HTML document to the browser.
The server keeps several logs for each transfer, but these logs keep only track of content items requested (pages,
images, etc.), time, date, the client machine name and IP address. As with most popular operating systems, the use is
not identified onto the machine, and the browser does not send any user identification on requests; different users on
the same machine generate identical entries into the log file. In this case, whenever different students use the same
machine, to keep track of each different student activity is impossible (see Table 1). The server logs only register
accesses from the computer, but it is unable to know if they are from a single user or not, and even who is making the
requests.

pcl.udg.es - - [22/Oct/1997:18:00:38] "GET /--usd/CS.CGI?2WuJI uJ1u1dxwqaZSKaCaoM HTTP/1.0" 200 511
pcl.udg.es - - [22/Oct/1997:18:00:38] "GET /--usd/Prog/Users/guest.tmp.html HTTP/1.0" 200 1743
pc 1 .udg.es - - [22/Oct/1997:18:00:39] "GET /--usd/CS.CGIT504J1uScfwnuAllZ3o1ZWZ7 HTTP/1.0" 200 1834
pcl.udg.es - - [22/Oct/1997:18:15:32] "GET /--bueno/ HTTP/I .0" 200 4477
pcl.udg.es - - [22/Oct/1997:18:15:34] "GET /bueno/graficos/es0.gif HTTP/1.0" 200 1259
pet .udg.es - - [22/Oct/1997:18:15:34] "GET /--bueno/graficos/en0.gif HTTP/1.0" 200 1491

Table 1 : standard log file contents

Some entries from a standard log file are showed in the Table 1. Each line represents a request made to the HTTP
server. The information shown is relating to the client machine (for instance pc 1.udg.es), date, time, the type of
request (usually GET), the URL requested (for instance /--usd/Icons/logo.gif). Note that it is impossible to know if
requests made from pcl.udg.es (a computers room machine) at 18:00 and 18:15 are from the same user or not. Since
standard logs do not save the information that is needed, and they are not a valid solution under our design strategy.

Modify an existent HTTP server in order to adapt it to the tracking and identification needs. Most of standard
servers have some Application Programmers Interface (API) that would enable to carry out tracking and identification
functions. However, the applications produced for a specific server API are rarely usable by a different server.
Moreover, APIs link the application code into the server core, hence, a bug in one API-based application can corrupt
other applications or the server, or some malicious application could steal security information from the server.
Furthermore, APIs are tied to the internal architecture of a particular server, hence, changes on the server also imply
changes on the API, and consequently to the applications which are using the API. In [13] a solution based on APIs is
proposed, the client is modified, therefore, similar problems are found. This solution was defmitely against our design
objectives.

Using Cookies [14]. Netscape proposed Cookies as a mechanism to enable the server side of an HTTP connection
to store and retrieve information on the client side; this task is usually carried out by a CGI process. When returning
an HTTP object, the server may also send some state information to the client, this state can be stored. The state
information includes the range of URLs for which the state is valid. Hence, any future HTTP request made by the
client within this range will include the state information, and thus will be passed back to the server. This allows to
carry out an identification information within the HTTP requests. Common practice would suggest using these cookies
to carry out state and identification information. We discarded it because cookies are not a standard feature, and need
non-standard extensions for clients and servers [12]. Moreover, with most common operating systems and current
browsers, cookies on a particular client browser are shared by all users who are using the browser, consequently
leading to security and identification problems. Cookies can also be easily disabled, copied, modified or erased.
Finally, cookies are stored in the client machine, thus the users, who use different computers to log into the system,
fmish with different state information on each of these computers. For instance, if a user logged in the system using a
different client machine would appear in the system as "new" user, since his previous history is ignored. The method
to prevent that problem is storing the state information on the server, cookies cannot serve this purpose.

Using standard HTML forms [15]. The forms can contain user identification or any needed state information
within hidden variables. The HTML pages that include these forms would be generated dynamically on the server by

4

CGI programs. When the user pushes the submit button on his browser, these variables are sent back to the server, a
CGI could process the information within the hidden variables, and then generate new forms with the new state
information into the hidden variables. All served pages should be based around an HTML form, and users should
submit them every time they use the application, this is the major limitation of this method. This approach constrains
the format of the pages beyond an acceptable limit, as using normal HTML pages would be impossible.

Client-server application using Java. It would also be possible to build a custom client-server application using the
Java language. In this case, the user downloads the client from a standard browser; from now on the transfer is
carried out using a custom protocol which is designed to support full user identification and tracking. The main
drawback is that Java applications are still very slow and resource-consuming at the present.

In [16] a solution is proposed. The major drawback is that an special dedicated client viewer is needed, which must
be downloaded and installed by the users before they can start the educational process.

4. The Adopted solution: description of the Custom Server

To overcome the drawbacks of those proposals, while standard browsers and HTTP servers can be used, we
propose the utilisation of a CGI compliant program running on the server machine called Custom Server (CS). This
approach uses any standard HTML browser running on the local (client) machine and any standard HTTP server
running on the remote (server) machine, which support CGIs (see Figure 2). The contents (i.e. the pages including
images and Java applets) is written in the HTML format, therefore, any standard editing tool can be used.

The CS is placed between the standard HTTP server and the contents. Consequently, the requested HTML
documents are not directly provided by the HTTP server. The information is adequately conformed by the CS by
inserting user identification within hypertext links, and redirecting them again to the CS.

In general, the modification of URLs pointing to local HTML files is needed. Note that not all local URLs need to
be transformed; most images (and other contents items like Java applets, etc.) do not need to be tracked, hence their
URLs are not modified. Therefore, the HTTP server must also be able to access the contents without passing through
the CS.

CLIENT MACHINE

STANDARD HTTP CLIENT
(BROWSER)

Request HTML document

STANDARD HTTP SERVER
(HTTPD)

Keeps logs

JOGS CONTENTS
(pages, images, Java applets, etc.)

SERVER MACHINE

STANDARD HTTP CLIENT
(BROW SER)

Request I I Processed HTML document

STANDARD HTTP SERVER
IHTTPD)

IRequest Images

;USTONI SERVER
(CCIt program).

Manegingi t Request pages 1, t
DATABASE,

(log, Users/..., ...) I
?)NTENTS

(pages) (images, Java cloak:Its)

SLEVILIL.MAgiliblL

Figure 1 : HTTP Architecture Figure 2 : Proposed Architecture

The contents is stored as HTML pages with "normal" links, and the CS is responsible for the customisation of
these pages before they are served according to each user, meanwhile storing information about his navigation steps.
Each single page request passes through the CS, thus the CS is able to have a entire control on the accesses
mechanism. Any necessary information can be computed, stored and then retrieved at any time.

To store all of this state information about users, the CS maintains a database that overcomes the lacking of default
log system which is offered by the Standard HTTP Server. This database includes not only the accessed pages and
from which remote machine, but also the information needed to track the user navigation, i.e. which users log into the
system, what materials he has accessed, how many times, how much time he spent on it, the responses to proposed
tests or exercises, the last pages accessed, etc.

The creation of HTML reports containing the information stored into the database is an important function of the
CS. Several reports that users and teachers may need can be easily implemented from this database. Finally, the CS is
responsible for another UNM functionality, that is: FAQ accessing and FAQ maintenance, control of working
documents, asynchronous and synchronous communications, etc. All of these functions are implemented in the CS.

5 BEST COPY AVA _ABLE

4.1 The identification process

At the moment of starting the connection, by opening the entry URL [17] using any browser, the user is faced with
a login dialogue where, by entering login and the password, he is identified. Without completing this process, the user
will not be authorised to use the units on the teaching support system.

The above login procedure has three main purposes : a) to prevent unauthorised users to access the units, b) to be
able to identify single users in order to keep track of them when using the units, and customise the context if needed,
and c) to be able to distinguish between user categories. The units can behave differently according to the privileges of
the user. Some user categories may have access to features others would not.

Related to the third purpose, there are four user categories: Supervisor, Teachers, Students and Guests. The
Supervisor acts as the system manager, therefore he has the entire control over the UNM functions. He is also the
responsible for assigning login and password to new users, install the units and keep the system running. The teachers
have full access to the units, and they can control and supervise their own ones. The students can fully navigate
contents of the units and make use of all features that the teacher have prepared for them; but they only can control
and supervise their own personal information. Finally, guests have limited access to some units contents, according to
the teachers' criteria.

The description of how the identification process is implemented, is explained by an example in the following.
First, a user has just entered the login (Enrique) and password (K3db21) on the initial identification page, that is made
in a HTML form. By clicking the submit button, the following URL is requested to the remote HTTP server:

http://eia.udg.es/usd/CS.CGI? Function=ID& User=Enrique& Passwd=K3db21

When the HTTP server gets this request, the Custom Server CGI program (CS.CGI) is invoked. Three parameters
(after the "?" and separated by "&" chars) are passed to the CGI on the URL. The first parameter ("Function=ID")
informs the Custom Server about an identification request. The first parameter is the function that the Custom Server
has to perform. The next parameters are the user name identification (or login) and password that the user just
introduced.

4.2 Inserting user identification within hypertext links

The CS must check this login and password in the database. If this is correct, the CS gets the default root page
from the contents. Before passing the page to the HTTP server, which will serve it to the browser, the local URLs are
customised as is shown in the following. Suppose the starting (root) page contains the following HTML expression:

SUBJECT 1

then the CS explores the HTML source to locate such a local URL, which is transformed to:

 SUBJECT 1

The served page has the modified URL containing the user identification. After some time the user may click on
that link, then a new request is passed to the Custom Server. In this case, the value of the function parameter is "PR",
that is a page request, the second parameter identifies the user requesting the page, and the third parameter is the
name of the page requested.

The CS gets the desired page (subjectl.html) from the contents pool, and customises this page in the same manner
as before. Subsequently, the CS passes the modified page to the server which actually delivers it to the browser. The
CS also reflects on the database that this user is getting this page, and any other needed information.

To simplify this presentation, aspects as parameters encryption to avoid security problems, or questions related to
more complex URLs, are omitted. In the current implementation, parameters passed to the CGI are encrypted. URLs
contain security information to avoid URL copying and pasting into other browsers that could lead to several
problems. The encryption algorithm contains time-out information, hence URLs expire after a reasonable amount of
time. It also contains information about the client machine. Consequently, copying URLs from one browser to another
on a different machine, the mechanism does not work as desired. Finally, a "request-sequence" information is also
used, hence, copying the URL to another browser on the same machine will also fail, preventing the user from
"parallel navigation" which could confuse de Custom Server.

4.3 Database management and HTML Report documents

By the user identification, the Custom Server can maintain a database that overcomes the stateless nature of the
HTTP protocol. The database consists of a set of log files, similar to the standard HTTP-server log files, but also
storing the complementary user information. Mainly, a general log file where users login and logout are stored; but

6

another particular log file associated with each user is also maintained. In this case, the requested pages and the time
spent are saved.

The contents of general log file Table 2 and user Enri ue's log file Table 3 are described in the followin .

Date Time Action and Usemame Client Machine
9/Sep/97 (20:29) Login usuario:enrique (morgan.udg.es).
9/Sep/97 (20:33) Login usuario:toni (atreides.udg.es).
9/Sep/97 (20:42) Usuario:enrique logout de la cuenta. .

Table 2 : Custom lo file contents
Requested HTML-document time spent in seconds
*Unidad: LES XARXES DE COMUNICACIONS I LA INFORMATICA
teleinfo/index.html 9 (00:00:09)
teleinfo/repercusions/comunicacio.html 227 (00:03:47)
teleinfo/index.html 330 (00:05:30)

Table 3 : One session tracking information.

The Custom Server analyses these files and translates the information into HTML reports. By consulting these
reports, both teachers and students may be able to evaluate how the materials are being used, and to improve the
teaching-learning process. In [12] a similar solution is proposed for similar objectives. But, since all state variables are
embedded into the URL, the state cannot be preserved between different sessions at the application level.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a solution to the user tracking and identification upon a educational web environment is proposed.
This approach is implemented into a wide project that needs to keep complete track of users who access to a set of
contents published on the net. This approach is relatively easy to implement, it also gives enough flexibility and it is
compatible with any standard HTML web browsers and HTTP servers.

This is a work in progress, consequently, some parts are still being implemented. Therefore, some above aspects
may change in the future, new functionality may be added, like new reports, according to the suggestions of the actual
users. The adopted solution gives sufficient flexibility to adapt the platform to future needs.

References
[1] W3C - The World Wide Web Consortium. http://www.w3.org
[2] RFC1459 : Internet Relay Chat Protocol.
[3] Hypertext Transfer Protocol Overview. http://www.w3.org/pub/WWW/Protocols
[4] BrowserWatch. http://browserwatch.iworld.com
[5] The Netcraft Web Server Survey. http://www.netcraft.co.uk/Survey
[6] HyperText Markup Language (HTML) http://wwww3.org/pub/WWW/MarkUp
[7] Common Gateway Interface http://www.w3.org/pub/WWW/CGI/Overview.honl
[8] T. Verdi' and R. Fabregat "Uso de las nuevas Tecnologias de la Información e Internet, como complemento de InnovaciOn y

Mejora de la Docencia" - Congreso Universitario sobre Innovación Educativa en las Ensefianzas Técnicas Set.1.996.
Zaragoza

[9] J.L. Marzo, M. Estebanell, R. Fabregat, F. Ferrés, T. Verdi'. "Support Units for University Teaching based on WWW".
ED-MEDIA/ED-TELECOM'98. June 1.998. Freiburg.

[10] JavaSoft Home Page. http://java.sun.com
[11] JavaScript Guide. http://home.netscape.com/eng/rnozilla/3.0/handbook/javascript/index.html

JavaScript 1.1 Language Specification http://home.netscape.corn/eng/javascripilindex.html
[12] SSI+ 2.0 Reference. hap://webquestquestancom/reference/ssi/ssi20refsht
[13] A. Iyengar. "Dynamic argument embedding : preserving state on the World Wide Web". IEEE Internet Computing.

Volumen.1 Number 2. March - April 1.997. pp. 50-56
[14] Persistent Client State. HTTP Cookies. Preliminary Specification. http://horne.netscape.com/newsrefIstd/cookie_spec.html
[15] HTML Forms and CGIs. http://www.chin.gc.ca/--training/html/forms.html
[16] B. Ibrahim and S.D. Franklin. "Advanced - Educational Uses of the World Wide Web". WWW'95. Third International

WWW Conference - Technology, Tools and Applications April 10-14, 1995, Darmstadt, Germany.
[17] Web Addressing Overview. http://www.w3.org/pub/WWW/Addressing

Acknowledges
The authors would like to thank MeritxelEstebanell Minguell and JosefinaFerres Font, Departament of Pedagogy, The University of Girona, for

their many constructive observations and comments. Also thanks to EnriqtMonserrat for his valuable help in the implementation of the Custom Server
software and for his many technical contributions.

7 BEST COPY AVAILABLE

L3

U.S. Department of Education
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

NOTICE

REPRODUCTION BASIS

ERIC

This document is covered by a signed "Reproduction Release
(Blanket) form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release form
(either "Specific Document" or "Blanket").

EFF-089 (9/97)

